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Abstract. In the initial stages of homoepitaxial growth on the (100) surface of metals such as Ag, Fe, Cu,
Ni, and Pd, where the clean surface does not reconstruct, two-dimensional islands with compact, near-
square shapes are formed. In order to determine the phenomenological material parameters of the nonlinear
and nonlocal Landau-Ginzburg theory, which describes the metal homoepitaxial systems mentioned above,
an atomistic model for these systems is developed. Based on this model, we derive analytical relationships
between the Landau-Ginzburg parameters A, B, C, and D, and the parameters of the homoepitaxial system
(such as coverage, first-neighbour interaction energy, etc.). We find that the Landau-Ginzburg parameters
of the system depend on the specific material as well as on the coverage of the surface. We then apply the
method to the Ag/Ag(100) system.

PACS. 68.47.De Metallic surfaces – 61.50.Ah Theory of crystal structure, crystal symmetry; calculations
and modeling – 64.60.Qb Nucleation

1 Introduction

Surface phenomena are important in science and industry,
and their study and exploitation have lead to a revolution
in many fields [1]. Their study has been greatly advanced
with the development of the scanning-tunnelling micro-
scope and its extensions such as the atomic-force micro-
scope and the scanning-probe microscope in general. The
atomic resolution offered by these tools has enormously
increased our knowledge of the structure and dynamics
of surfaces [2]. In combination with high vacuum condi-
tions, and controlled coverage and sample temperature, it
is possible to study not only adatom dynamics and ther-
modynamic behaviour but also the initial states of nucle-
ation and growth. As the possible combinations of surface,
adatom type, and surface density are enormous, so are the
possible outcomes. Important effects following the interac-
tion between adatoms and surfaces include the mediation
of these interactions due to surface strain and electronic
effects. There is a need to study these cases over many dif-
ferent length scales and in various degrees of detail. Since
the atomic interactions are different at the surface than in
the bulk, and new types of interactions are possible, there
is also a need to extend the modelling of these interactions.
In addition, the modelling of adatom dynamics requires
taking into account a large number of atoms and is there-
fore very demanding in terms of computer resources. All
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of this has resulted in a wealth of methods, new and old,
being applied, ranging from continuum theories to atom-
istic models, from semiempirical to ab initio, and from
classical methods to quantum-mechanical treatments.

A system that has attracted a lot of attention is that
of homoepitaxy on metallic and semiconducting surfaces.
Concerning the effect on the adatom dynamics, it was
found that for a given number of adatoms at high tem-
peratures, the adatoms are quite mobile and do not form
islands, whilst at lower temperatures they do form is-
lands [3]. The special case of the initial stages of ho-
moepitaxial nucleation and growth on the (100) surfaces
of metals such as Ag, Fe, Cu, Ni, and Pd, where the
surface does not reconstruct and two-dimensional islands
with compact, near-square shapes are formed, has been
studied [4–11]. Most of the modelling for such cases is at
the atomic level. On the other hand, for the case of spi-
ral growth on surfaces [12], the nonlinear, nonlocal, time-
dependent Landau-Ginzburg theory was used. In another
work, the nonlinear, nonlocal, time-dependent Landau-
Ginzburg theory was combined with a stochastic process
in order to study the growth of square islands on the (100)
surface of Ag [13].

In this paper, we develop a simple atomistic model
for the metallic homoepitaxial systems mentioned above,
and based on this model we derive analytical relation-
ships between the parameters of the system (such as cov-
erage, first-neighbour interaction energy, etc.) and the
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phenomenological, positive and temperature-independent
Landau-Ginzburg parameters of the system. We believe
that this is the first example of the provision of analytical
relationships between the parameters of the homoepitax-
ial system and the Landau-Ginzburg parameters of the
system. We should also emphasise that we are interested
in small coverages of the surface, which means that the to-
tal number of adatoms is much smaller than the number
of available lattice adsorption sites on the surface.

In order to determine the relationships between the
Landau-Ginzburg parameters of the system and the ho-
moepitaxial parameters, we consider two different limit-
ing equilibrium states of the system. In the first state, all
of the adatoms are free on the surface and there are no
bonds between them. This state corresponds to phase 1.
In the second state, all of the adatoms have formed a two-
dimensional island with a compact, near-square shape,
which contains a small number of perimetric vacancies.
This state of the system corresponds to phase 2. Then
we calculate both atomistically and using the Landau-
Ginzburg theory, the free energy changes between these
two phases. The condition of coincidence between these
two approaches results in a system of four equations with
four unknowns: the Landau-Ginzburg parameters A, B,
C, and D of the system. By solving this system of equa-
tions with respect to the Landau-Ginzburg parameters, we
finally find four analytical relations between the Landau-
Ginzburg parameters A, B, C, and D, and the parame-
ters of the homoepitaxial system. Our main conclusion is
that the Landau-Ginzburg parameters of the homoepitax-
ial system depend on the specific material as well as on
the coverage of the surface. We perform an application of
the whole procedure to the case of an Ag/Ag(100) system.

Our paper is organised as follows. In Section 2, we
describe the atomistic model and we calculate the total
free energy change of the system when a two-dimensional
island is formed on the surface. In Section 3, we deter-
mine the density of the two-dimensional island. Then,
in Section 4 we develop the Landau-Ginzburg theory to
describe the (100) metallic homoepitaxial systems and
we also derive the analytical relationships between the
Landau-Ginzburg parameters and the parameters of the
homoepitaxial system. Finally, in Section 5 we summarise
our findings.

2 The atomistic model

We consider n adatoms on a (100) metal surface that con-
tains N four-fold hollow adsorption sites, and we study
two different limiting equilibrium states of the system. As
we can see in Figures 1a and 1b, in the first state all of the
adatoms are free on the surface and there are no bonds
between them (phase 1), whereas in the second state all
of the adatoms have formed a square island that contains
a small number of perimetric vacancies (phase 2).

The internal energy U1 of phase 1 is given by

U1 = nε2, (1)

(a)

(b)

Fig. 1. (a) Schematic illustration of the state where all
adatoms are free on the surface. This state of the system corre-
sponds to phase 1. (b) Schematic illustration of the state where
all adatoms have formed a compact island with a near-square
shape. This state of the system corresponds to phase 2.

where ε2 is the interaction energy between an adatom and
the surface. The entropy S1 of this state is given by

S1 = kB ln
[

(N − 5n + 5)!
n! (N − 6n + 5)!

]
, (2)

where kB = 8.62 × 10−5 eV/K is Boltzmann’s constant
and the fraction (N−5n+5)!

n!(N−6n+5)! is the statistical weight Ω of
this state, which is equal to the number of ways in which
the n free adatoms can occupy the N − 5(n − 1) lattice
sites available on the surface. The Helmholtz free energy
F1 of this equilibrium state at a temperature T is given by

F1 = U1 − TS1 = nε2 − TkB ln
[

(N − 5n + 5)!
n! (N − 6n + 5)!

]
, (3)

and the coverage θ = n/N must satisfy the condition:
θ < 1/6 + 1/N .

In phase 2, we consider that the concentration of the
perimetric vacancies is small. Hence, to a first approxi-
mation we can consider that for every vacancy, two first-
neighbour bonds are broken (three first-neighbour bonds
are broken when a perimetric atom leaves the island and
one first-neighbour bond is created between this atom and
the island). In addition, we should emphasise that the
perimetric atoms that leave the island remain attached to
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Fig. 2. The dependence of the free energies F1 and F2 on
temperature. F1 is the free energy of phase 1 and decreases
linearly as the temperature increases, whereas F2 is the free
energy of phase 2 and to a first approximation is temperature-
independent.

the island and there are no free adatoms in phase 2. Hence,
the internal energy U2 of a square island that contains
n = n2

1 atoms and Nv perimetric vacancies is given by

U2 = 2nε1 − 2
√

nε1 − 8λ
√

nε1 + nε2, (4)

where ε1 is the first-neighbour interaction energy between
the adatoms, and λ = Nv/(4

√
n) is the concentration of

vacancies. By setting λ = 0 in equation (4) we can find
the internal energy of a square island with no vacancies.
Bearing in mind that the vacancy concentration is small,
we can consider the entropic term to be very small for this
state. Hence, the Helmholtz free energy F2 of this state is
given by

F2
∼= U2 = 2nε1 − 2

√
nε1 − 8λ

√
nε1 + nε2. (5)

The total free energy change ∆Fatom = F2−F1 is given by

∆Fatom =

2ε1

(
n −√

n
) − 8λ

√
nε1 + TkB ln

[
(N − 5n + 5)!

n! (N − 6n + 5)!

]
,

(6)

where we have used the subscript “atom” because we cal-
culate this energy atomistically. In Figure 2, the depen-
dence of F1 and F2 on temperature is shown, whereas the
temperature dependence of ∆Fatom for the Ag/Ag(100)
system is shown in Figure 3. The lattice constant of Ag
is a = 4.09 Å, while the cohesive energy per atom in the
bulk is equal to 2.95 eV [14,15]. Hence, the first-neighbour
interaction energy is ε1 = −2.95/12 eV = −0.246 eV since
every atom in the bulk fcc lattice has 12 first neighbours.
The interaction energy ε2 between an adatom and the
surface (which contains four-fold hollow adsorption sites)
is taken to be ε2 = 4ε1 = −0.984 eV. Also, we choose
N = 104 adsorption sites, n = 100 adatoms and λ = 0.1.
These are then the values of the parameters a, ε1, ε2, N , n,

Fig. 3. The dependence of the free energy change ∆Fatom =
F2 − F1 on temperature. The free energy change increases lin-
early as the temperature increases and it vanishes at the tran-
sition temperature T1.

and λ of the homoepitaxial system that will be considered
in this paper.

The transition temperature T1 at which ∆Fatom = 0
is given by

T1 =
8λ

√
nε1 − 2ε1 (n −√

n)

kB ln
[

(N−5n+5)!
n!(N−6n+5)!

] . (7)

For T < T1, phase 2 is more stable, whereas phase 1 is
more stable for T > T1. We should mention that our
model is equivalent to the classical two-dimensional Ising
lattice-gas model with first-neighbour attractive interac-
tions. As expected, the transition temperature T1 (which
is the temperature where the system enters the two-phase
coexistence regime) depends on the material as well as on
the coverage θ = n/N of the surface. In order to illustrate
the validity of our analysis, we compare the transition tem-
perature T1 against the Ising lattice-gas model prediction
(Onsager’s solution) for the Ag/Ag(100) system. In Fig-
ure 4, the coverage-temperature phase diagrams for the
two-dimensional Ising lattice-gas model and our atomistic
model are shown. As is well-known, the line that separates
the two regimes (binodal) for the two-dimensional Ising
lattice-gas model (Onsager’s solution) can be calculated
exactly and is given by [16]

T =
2J

kB

1

ln
[√

1
1−(2θ−1)8

+
√

1
1−(2θ−1)8

+ 1
] , (8)

where kB is Boltzmann’s constant, θ is the coverage, and
J = −ε1/4. As can be seen in Figure 4, the agreement
is quite good for small coverages although disagreement
occurs at higher coverages. This is not unexpected, since
our atomistic model is quite simple in the sense that there
are no first-neighbour interactions between the adatoms in
phase 1 (all of the adatoms are isolated). This is a good
approximation for small coverages, but at higher cover-
ages we expect the presence of significant first-neighbour
interactions between the adatoms. Thus, in our atomistic
model, the transition temperature T1 can be very high
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Fig. 4. The coverage-temperature phase diagrams for the two-
dimensional Ising lattice-gas model (Onsager’s solution) and
the atomistic model. The solid line represents Onsager’s solu-
tion and the dashed line represents the atomistic model.

when the coverage is relatively high, and the restriction
of isolated adatoms in phase 1 is fulfilled. To summarise,
we conclude that in the small-coverage regime (which is
the regime that we are interested in) our predictions agree
quite well to that of Onsager’s solution.

It would be very interesting if we were able to compare
the transition temperature T1 with experimental observa-
tions. As far as we know, there has been no experimen-
tal determination of the transition temperature for (100)
metal homoepitaxial systems. Nevertheless, we are aware
of a situation similar to that presented here: Tromp and
Mankos [3] have successfully measured the concentration
of Si atoms, on very large step-free regions of a Si(001)
surface, as a function of temperature. At high tempera-
tures in the range of 750–1050 ◦C, the surface contained
only the adatom lattice gas, which was too dilute and
too mobile to be observed directly. The sample was then
rapidly quenched, and as the temperature dropped, the
adatom gas became supersaturated, and the nucleation
and growth of two-dimensional islands was observed in
real time. Hence, at low temperatures the surface con-
tained only a distribution of two-dimensional islands. By
measuring the fractional area of the terrace covered by
the two-dimensional islands, they were able to determine
the adatom concentration at the initial high temperature.
Of course, they did not measure the transition tempera-
ture between the two states (adatom gas and islands) as
a function of coverage, but the similarity between their
system and the atomistic model presented here is clear.
At high temperatures there is only the adatom lattice gas,
whereas at low temperatures only two-dimensional islands
are formed. Finally, we conclude that an experimental de-
termination of the transition temperature (for (100) metal
homoepitaxial systems) as a function of coverage is some-
thing that remains to be done.

3 The density of the two-dimensional island

In this section we describe the method with which it
is possible to determine the density of a compact, two-

Fig. 5. Schematic illustration of a lattice line of the island in
the horizontal direction x. At the middle of each segment of
length a there is an atom of the island. The perimetric atoms
are shown as grey in colour.

dimensional, near-square island, which contains n = n2
1

atoms and Nv perimetric vacancies.
As can be seen in Figure 5, in order to calculate the

density in the horizontal direction x, we consider a lattice
line of the island (with lattice constant a) that contains
n1 atoms, and then divide this line into n1 segments of
length a in such a way that there is an atom at the mid-
dle of any segment. Placing the origin of the axes on the
first atom from the left, we find that the discrete density
ρdis(x) for the points from x = a to x = (n1 − 2)a (where
there are no vacancies) is equal to ρmax = 1 atom/a. For
the points x = 0 and x = (n1 − 1)a (these atoms being
coloured grey), where the detachment of an atom and the
subsequent creation of a vacancy is possible, the density
ρdis(x) is equal to

ρdis(0) = ρdis((n1 − 1)a) = (1 − λ)ρmax . (9)

The density at these points is different because at the
island’s edges there is a probability (1 − λ) that an atom
will remain at the edge of the island. In the same way,
the density ρdis(x) at the points x = −a and x = n1a is
given by

ρdis(−a) = ρdis(n1a) = λρmax . (10)
In summary, we find that the discrete density ρdis(x) is
given by:

ρdis(x) = 0, ∀x < −a,

ρdis(x) = 0, ∀x > n1a,

ρdis(x) = ρmax , ∀x = a, ..., (n1 − 2)a,

ρdis(0) = ρdis((n1 − 1)a) = (1 − λ)ρmax ,

ρdis(−a) = ρdis(n1a) = λρmax . (11)

As expected, the density change at the island’s edges is
determined by the concentration λ of the vacancies. For
λ = 0, we find ρdis(0) = ρdis((n1 − 1)a) = ρmax and
ρdis(−a) = ρdis(n1a) = 0, which means that the island
is perfectly square. In Figure 6, a graph of the discrete
density ρdis(x) is shown.

It is possible, for small λ, to approximate very well the
discrete density ρdis(x) by the continuous density ρcont(x),
which is given by

ρcont(x) = ρmaxExp

[
− (x − µ)2κ

d2κ

]
, (12)
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Fig. 6. A graph of the discrete density ρdis(x). The density
change at the island’s edges is determined by the concentration
λ of the vacancies.

Fig. 7. Comparison between the discrete and the continuous
densities. The symbols show the discrete density while the solid
line indicates the continuous density. It can be seen that the
agreement between them is very good.

when:

µ =
n1 − 1

2
a, (13)

κ =
1
2

ln
[

ln(1−λ)
ln λ

]

ln
(

n1−1
n1+1

) , (14)

and

d =

⎡
⎣ (−µ)2κ

ln
(

1
1−λ

)
⎤
⎦

1
2κ

. (15)

The parameter κ in equation (14) is rounded in order
to take integer values. The condition that the continu-
ous density ρcont(x) is a maximum and equal to ρmax

at the middle µ of the island determines equation (13),
whereas equations (14) and (15) are determined by the
condition that the continuous density ρcont(x) is equal to
the discrete density at the points x = −a and x = 0
or equivalently at x = (n1 − 1)a and x = n1a. Using
equations (13–15) we find µ = 18.405 Å, κ = 8, and
d = 21.184 Å. As we can see in Figure 7, the continu-
ous density ρcont(x) approximates very well the discrete
density ρdis(x) for small λ.

Due to symmetry, the continuous density ρcont(y) in
the vertical direction y is given by

ρcont(y) = ρmaxExp

[
− (y − µ)2κ

d2κ

]
, (16)

where the parameters µ, κ, and d are given by equa-
tions (13–15) respectively, and ρmax = 1 atom/a. Finally,
the continuous density ρcont(x, y) of the near-square two-
dimensional island is given by

ρcont(x, y) = ρcont(x)ρcont(y) = ρ2
maxg(x, y), (17)

where ρ2
max = 1 atom/a2 and

g(x, y) = Exp

[
− (x − µ)2κ + (y − µ)2κ

d2κ

]
.

In Figure 8a, a graph of ρcont(x, y) is shown.
By integrating ρcont(x, y) over the entire surface, we

find
√

N
2 a∫

−
√

N
2 α

√
N
2 α∫

−
√

N
2 α

ρcont(x, y)dxdy =100.467 atoms,

which is in very good agreement with the value of n =
100 atoms.

4 Determination of the Landau-Ginzburg
parameters

Within the framework of the nonlinear and nonlocal
Landau-Ginzburg theory, the total free energy change of
the system when a near-square island is formed on a sur-
face is a functional of the order parameter. Based on pre-
vious Landau-Ginzburg studies on binary fluids, binary
alloys [17], and structural phase transitions [18–21], we
adopt the following free energy functional:

∆FLG =
∫∫ [

1
2
AδTσ2 − 1

3
Bσ3 +

1
4
Cσ4 +

1
2
D

(
∂σ

∂x

)2

+
1
2
D

(
∂σ

∂y

)2
]

dxdy, (18)

where A, B, C, and D are positive, temperature-
independent phenomenological parameters of the system,
δT = T − T̃c, the critical temperature at which phase
1 becomes unstable is T̃c, and σ(x, y) = ρcont(x,y)−ρ0

ρ0

is the order parameter of the system. ρ0 = n/(Na2) is
the density of phase 1 and the integration is performed
over the entire surface. The local free energy density
fL = 1

2AδTσ2− 1
3Bσ3 + 1

4Cσ4 has one minimum at σ = 0
corresponding to phase 1, and another minimum at a value
where σ > 0. For δT = 0 (T = T̃c), the free energy den-
sity barrier vanishes and phase 1 becomes unstable. The
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(a)

(b)

(c)

Fig. 8. (a) A graph of the continuous density ρcont(x, y) of a
two-dimensional island with a compact, near-square shape. (b)
A graph of the order parameter σ(x, y) of the homoepitaxial
system. (c) A graph of the function h(x, y) for the homoepi-
taxial system.

gradient terms in the free energy functional represent the
vacancy contribution to the total free energy change of
the system. Also, as mentioned in the introduction, we
are interested in small coverages of the surface. Hence, we
do not take into account the dynamics of the growth of
phase 2. What we essentially do is compute the free en-
ergy differences between the two phases and study their
relative stability. In order to do this, we use the nonlinear

and nonlocal Landau-Ginzburg theory instead of the clas-
sical nucleation theory. The free energy functional given
by equation (18) describes the square symmetry in the
perpendicular directions x and y.

In Figure 8b, a graph of σ(x, y) is shown. It is easily
demonstrated that the order parameter can be written as

σ(x, y) = σmaxh(x, y), (19)

where

σmax =
ρ2
max − ρ0

ρ0
=

1 − θ

θ
(20)

is the maximum value of the order parameter, and the
function h(x, y) is given by

h(x, y) =
ρcont(x, y) − ρ0

ρ2
max − ρ0

. (21)

In Figure 8c, a graph of the function h(x, y) is shown.
The order parameter takes values between –1 and σmax ,
whereas the function h(x, y) varies between –1/ σmax and
1. Both of these are dimensionless.

Inserting equation (19) into equation (18), we find that

∆FLG =
1
2
Ãσ2

max − 1
3
B̃σ3

max +
1
4
C̃σ4

max , (22)

where:

Ã = I1AδT + DI4, (23)

B̃ = I2B, (24)

C̃ = I3C, (25)

I1 =
∫∫

h2(x, y)dxdy, (26)

I2 =
∫∫

h3(x, y)dxdy, (27)

I3 =
∫∫

h4(x, y)dxdy, (28)

and

I4 =
∫∫ [(

∂h

∂x

)2

+
(

∂h

∂y

)2
]
dxdy. (29)

The total free energy change ∆FLG has a minimum at
σmax = 0, which corresponds to phase 1, and another
minimum at a value where σmax > 0, which corresponds
to phase 2. The relative stability of the two phases de-
pends on the values of the parameters Ã, B̃, and C̃. In
Figure 9a, a graph of the total free energy change ∆FLG

for the values Ã = 0.2, B̃ = 1, and C̃ = 1 is shown.
The local minimum of ∆LG at σmax = 0 corresponds to
phase 1, whereas the global minimum at a value σmax > 0
corresponds to phase 2.

Until now, we have calculated the total free energy
change of the system atomistically and from the Landau-
Ginzburg theory. In order to have agreement between
these two approaches, the free energy changes must be
equal at any temperature. This is true when ∆FLG = 0
at T = T1 (T1 being the transition temperature given by



G. Petsos and H.M. Polatoglou: Analytical determination of the Landau-Ginzburg parameters 455

(a)

(b)

(c)

Fig. 9. (a) A graph of the total free energy change ∆FLG of
the system for the values Ã = 0.2, B̃ = 1, and C̃ = 1. The
local minimum at σmax = 0 corresponds to phase 1, whereas
the global minimum at σmax > 0 corresponds to phase 2. (b) A
graph of the total free energy change ∆FLG of the system for
the values Ã = 0, B̃ = 1, and C̃ = 1. As can be seen, the free
energy barrier vanishes. The point σmax = 0 is a turning point
of ∆FLG. (c) A graph of the total free energy change ∆FLG of
the system for the values Ã = 2/9, B̃ = 1, and C̃ = 1. It can
be seen that the two minima of ∆FLG have the same value of
free energy.

Eq. (7)) and the derivatives of equations (6) and (22) with
respect to T are equal. This is true when

1
2

[
I1A

(
T1 − T̃c

)
+ DI4

]
− 1

3
I2Bσmax +

1
4
I3Cσ2

max = 0,

(30)

and
A =

2S1

I1σ2
max

. (31)

Hence, we have determined the phenomenological Landau-
Ginzburg parameter A so far. The critical temperature Tc

for the formation of an island with perimetric vacancies
(phase 2) is determined by the condition that Ã = 0.
When this is fulfilled, the total free energy barrier van-
ishes, and the point σmax = 0 is a turning point of ∆FLG.
In Figure 9b, a graph of ∆FLG for the values Ã = 0,
B̃ = 1, and C̃ = 1 is shown. As can be seen, the free en-
ergy barrier vanishes. From the condition Ã = 0 we find
that

T̃c − Tc =
DI4

AI1
. (32)

From the above relation we see that T̃c > Tc always. The
transition temperature T1 is determined by the condition

Ã =
2
9

B̃2

C̃
. (33)

When this condition is fulfilled, the value of the total free
energy change ∆FLG at the minimum where σmax > 0 is
equal to zero, and the two minima of ∆FLG have the same
value of free energy. In Figure 9c, a graph of ∆FLG for the
values Ã = 2/9, B̃ = 1, and C̃ = 1 is shown. As can be
seen, the two minima of ∆FLG have the same amount of
free energy.

Combining equations (32) and (33), we find that

T1 − Tc =
2
9

I2
2B2

I1I3AC
. (34)

Using equations (30–32) and (34), we can find the other
three positive phenomenological parameters B, C, and D
of the homoepitaxial system. We find that:

B =
6S1 (T1 − Tc)

I2σ3
max

, (35)

C =
4S1 (T1 − Tc)

I3σ4
max

, (36)

D =
2S1

(
T̃c − Tc

)
I4σ2

max

. (37)

From equation (7), we can find the transition tempera-
ture T1. Within the framework of our atomistic model,
it is not possible to determine the critical temperatures
Tc and T̃c. It is clear that the Landau-Ginzburg parame-
ters A, B, C, and D of the system depend on the specific
material as well as on the coverage θ of the surface.

5 Conclusions

We have considered the initial stages of homoepitaxial
growth on the (100) surface of such metals as Ag, Fe,
Cu, Ni, and Pd, where two-dimensional islands with com-
pact, near-square shapes are formed. We have considered
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two limiting equilibrium states of the system. In the first
state, all of the adatoms are free on the surface and there
are no bonds between them, whereas in the second state all
of the adatoms have formed a two-dimensional island with
compact, near-square shape. As expected, the transition
temperature for the formation of the island depends on
the material as well as on the surface coverage. We have
developed a method for a determination of the density
of a two-dimensional island with a compact, near-square
shape.

We have also derived analytical relationships between
the parameters of the homoepitaxial system (such as cov-
erage, first-neighbour interaction energy, etc.) and the
phenomenological, positive and temperature-independent
Landau-Ginzburg parameters A, B, C, and D of the sys-
tem. We have shown that the Landau-Ginzburg param-
eters depend on the specific material as well as on the
coverage of the surface. In order to illustrate the capabil-
ity of the procedure, we have applied it to the Ag/Ag(100)
system.

References

1. Harald Ibach, Physics of Surfaces and Interfaces
(Springer, Berlin, 2006)

2. Surface Analysis – The Principal Techniques, edited by
J.C. Vickerman (John Wiley & Sons, 1997)

3. R.M. Tromp, M. Mankos, Phys. Rev. Lett. 81, 1050 (1998)
4. C.R. Stoldt et al., Prog. Surf. Sci. 59, 67 (1998)
5. C.-M. Zhang et al., Surf. Sci. 406, 178 (1998)
6. M.C. Bartelt, J.W. Evans, Surf. Sci. 423, 189 (1999)
7. S. Frank et al., Phys. Rev. B 66, 155435 (2002)
8. Da-Jiang Liu, J.W. Evans, Phys. Rev. B 66, 165407 (2002)
9. Maozhi Li, J.W. Evans, Surf. Sci. 546, 127 (2003)

10. Maozhi Li, M.C. Bartelt, J.W. Evans, Phys. Rev. B 68,
121401(R) (2003)

11. Maozhi Li, J.W. Evans, Phys. Rev. B 69, 035410 (2004)
12. I.S. Aranson et al., Phys. Rev. Lett. 80, 1770 (1998)
13. G. Petsos, V. Vargiamidis, Comput. Mater. Sci. 17, 505

(2000)
14. N.W. Aschroft, N.D. Mermin, Solid State Physics (College

Edition, Saunders College Publishing, 1976)
15. C. Kittel, Introduction to Solid State Physics, 5th edition

(John Wiley & Sons, Inc., 1976)
16. M.E.J. Newman, G.T. Barkema, Monte Carlo Methods and

Statistical Physics (Oxford University Press, New York,
1999)

17. J.D. Gunton, M. San Miguel, P.S. Sahni, in Phase
Transitions and Critical Phenomena, edited by C. Domb,
J.L. Lebowitz (Academic Press Inc., London, 1983), p. 269

18. A.C.E. Reid, R.J. Gooding, Phys. Rev. B 50, 3588 (1994)
19. B.P. van Zyl, R.J. Gooding, Phys. Rev. B 54, 15700 (1996)
20. B.P. van Zyl, R.J. Gooding, Metall. Mater. Trans. A 27,

1203 (1996)
21. Y.A. Chu et al., Metall. Mater. Trans. A 31, 1321 (2000)


